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Abstract. We study the dispersion relation of the excitations of a dilute Bose-Einstein condensate con-
fined in a periodic optical potential and its Bloch oscillations in an accelerated frame. The problem is
reduced to one-dimensionality through a renormalization of the s-wave scattering length and the solution
of the Bogolubov-de Gennes equations is formulated in terms of the appropriate Wannier functions. Some
exact properties of a periodic one-dimensional condensate are easily demonstrated: (i) the lowest band at
positive energy refers to phase modulations of the condensate and has a linear dispersion relation near
the Brillouin zone centre; (ii) the higher bands arise from the superposition of localized excitations with
definite phase relationships; and (iii) the wavenumber-dependent current under a constant force in the
semiclassical transport regime vanishes at the zone boundaries. Early results by Slater [Phys. Rev. 87, 807
(1952)] on a soluble problem in electron energy bands are used to specify the conditions under which the
Wannier functions may be approximated by on-site tight-binding orbitals of harmonic-oscillator form. In
this approximation the connections between the low-lying excitations in a lattice and those in a harmonic
well are easily visualized. Analytic results are obtained in the tight-binding scheme and are illustrated with
simple numerical calculations for the dispersion relation and semiclassical transport in the lowest energy
band, at values of the system parameters which are relevant to experiment.

PACS. 67.40.Db Quantum statistical theory; ground state, elementary excitations

1 Introduction

The dynamics of cold atomic vapours trapped in a pe-
riodic external potential, as created by means of a far-
detuned standing wave of light, has become an active area
of research. Studies of ultracold atoms in such a confine-
ment have revealed a number of behaviours which are well-
known in solid state physics: Wannier-Stark ladders [1,2],
Bloch oscillations [3, 4] and Landau-Zener tunneling [5].
More recently, the observation of interference between
macroscopic quantum states of Bose-Einstein-condensed
vapours of 87Rb atoms confined in a vertical array of op-
tical traps has been reported [6]. Interference between the
condensates in different lattice wells manifests itself in
falling drops, which are emitted with a period determined
by the Bloch oscillations induced by the gravitational field
and are interpreted as coherent matter-wave pulses.

The properties of a Bose-Einstein condensate (BEC)
in a regular array of optical wells have been studied the-
oretically and numerically by a number of authors [7–13].
Especially relevant for our present purposes is the work
on an interacting BEC in an infinitely extended lattice
potential by Berg-Sørensen and Mølmer [7], who demon-
strated band structure and Bloch oscillations by solving
numerically the Bogolubov-de Gennes equations for the
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excitations and the time-dependent Gross-Pitaevskii
equation for motion under a constant applied force. They
also gave analytic results for the excitation spectrum in
the limit where the periodic potential can be treated as a
perturbation.

From solid state theory a tight-binding (TB) approach
offers the possibility of an analytic study of the same phe-
nomena in the opposite limit, when the lattice potential
is so strong compared with all other energy scales as to
allow the use of on-site orbitals for the approximate con-
struction of the Bloch states. In fact, the proper theoret-
ical tools are the so-called Wannier functions, which are
defined through the Fourier transform of the Bloch eigen-
functions in the momentum representation. In the particu-
lar case of one-dimensional (1D) motion, the energy bands
are non-degenerate and the states in any given one of them
are described from a single Wannier function, by repeating
it at each lattice site with the appropriate phase relation-
ship between different sites. The TB scheme may then be
realized by replacing the Wannier function by an on-site
“atomic” orbital, under suitable limiting conditions which
may be valid for the low-lying energy bands.

While the Wannier functions for motion in a generic
periodic potential are usually not easy to calculate, it
turns out that for the specific problem of 1D periodicity
posed by the confinement of a BEC in an array of optical
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wells one can take advantage of the results contained in
a classic paper by Slater [14] on a soluble problem in en-
ergy bands for electrons. Slater’s work also discusses the
conditions under which the Wannier functions for the low-
lying energy bands can be accurately approximated by on-
site orbitals, which in this case are the harmonic-oscillator
wave functions associated with the parabola describing the
bottom of each well.

The plan of the paper is as follows. In Section 2 we
first model a dilute BEC confined in a periodic optical
potential as a 1D dynamical system via inclusion of the
transverse size into a renormalized contact interaction. We
then formulate the problem of 1D band structure in terms
of Wannier functions, the only conceptual difference from
the analogous problem of 1D motion of electrons in a pe-
riodic potential being that for condensed bosons there is
no gap between the condensate ground state and the ex-
citation spectrum. In the same section we also formulate
the problem of Bloch oscillations of the condensate in a
single band in terms of the Fourier transform of the cor-
responding Wannier function.

The reduction of the general formalism to the TB ap-
proximation is effected in Section 3, after recalling Slater’s
conditions for its validity and extending them to an in-
teracting BEC. The TB scheme displays in an explicit
manner how the energy levels of a BEC in a single well
are shifted and spread into bands by the periodic replica
of the well potential. We give special attention to (i) the
lowest-lying energy band of the BEC, which contains its
wave-like phase excitations, and (ii) the connection that
the TB approximation exhibits between the excitations
in the next two higher bands and the dipole (“sloshing”)
and quadrupole excitations in an effectively 1D harmonic
well. The discussion suggests how excitations in these two
bands may be observed. We conclude this section by sim-
ple numerical illustrations of the dispersion relation in the
lowest band and of the current induced by a constant ex-
ternal force, for values of the system parameters which are
relevant to the experiments of Anderson and Kasevich [6].
Finally, Section 4 ends the paper with some concluding
remarks.

2 Band structure and Bloch oscillations
of a BEC from Wannier orbitals

We consider a dilute vapour of atoms of mass m in a Bose-
condensed state at zero temperature, which interact via
elastic collisions described by an s-wave scattering length
a and are confined in the optical lattice created by a laser
field. The lattice can be modelled as a transverse Gaussian
potential times a periodic potential along the z-direction,
namely the confining potential is

Ul(r, z) = U0 exp(−r2/r2
lb) sin2(kz). (1)

Here U0 is the well depth, scaling linearly with the in-
tensity of the laser beam, rlb is the transverse size of the
beam and k = 2π/λ its wavenumber. The lattice period is
d = λ/2.

In this work we reduce the above problem in cylin-
drical symmetry to an effective 1D problem. To this end
we freeze the transverse motions of the BEC and renor-
malize the interactions by a method proposed by Jackson
et al. [15] to treat an elongated BEC, in which the co-
herence length as introduced by Baym and Pethick [16]
is much larger than the transverse size. This reduction
will evidently be inapplicable to high-energy excitations,
when the excitation energy becomes comparable with the
transverse confinement energy and transverse motions can
therefore be induced. Its quantitative accuracy for low-
energy excitations is under numerical study.

Under the conditions indicated just above, the trans-
verse confinement modifies the mean-field interactions by
a factor depending on the axial density σ(z), the factor be-
ing

∫
dxdy |G(x, y;σ(z))|4 where G is the transverse part

of the wave function in the xy-plane. Using a harmonic
approximation for the radial part of the optical potential,
we obtain in the present problem an effective scattering
length per unit area given by

ã =
an0

rlbd

√
2|U0|
ER

, (2)

where n0 is the number of atoms per lattice well and ER =
h2/(md2). Notice that the energy ER differs by a factor
eight from the recoil energy Erecoil = ~2k2/2m. A similar
renormalization of U0 in equation (1) is negligible, since
rlb � λ.

The effective 1D Hamiltonian H that we treat thus is

H =
∫

dzψ†(z)Λ(z)ψ(z) +
1
2
g

∫
dzψ†(z)ψ†(z)ψ(z)ψ(z)

(3)

where ψ(z) is the field operator, g = 4π~2ã/m and Λ(z) =
−(~2/2m)∇2 + Up(z) − µ, with µ the chemical potential
and Up(z) = U0 sin2(kz). In the following all energies are
referred to the bottom of the lattice potential.

2.1 Lattice symmetry and Bose statistics

Let us summarily go through the standard Bogolubov pro-
cedure [17] for treating the boson Hamiltonian (3). We
make the Ansatz ψ(z) = φ(z) + ψ̃(z), which separates
the coherent condensate function φ(z) from the fluctuat-
ing part ψ̃(z) in the field operator. Upon substituting this
Ansatz in equation (3) and requiring that linear terms
in ψ̃(z) vanish, one obtains the Gross-Pitaevskii equation
for φ(z): [

Λ(z) + gφ2(z)
]
φ(z) = 0. (4)

We are taking φ(z) as real without loss of generality, with
normalization to unity over the lattice period.

To quadratic terms the Hamiltonian in the fluctuation
operators is diagonalized by the canonical transformation

ψ̃(z) =
∑
α

[
uα(z)aα − vα(z)a†α

]
,

ψ̃†(z) =
∑
α

[
u∗α(z)a†α − v∗α(z)aα

]
. (5)
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In equation (5) the suffix α denotes an appropriate set of
quantum numbers and the functions {uα, vα} satisfy the
Bogolubov-de Gennes equations,

L(z)uα(z)−HI(z)vα(z) = Eαuα(z),
L(z)vα(z)−HI(z)uα(z) = −Eαvα(z). (6)

Here, HI(z) = gφ2(z), L(z) = Λ(z) + 2HI(z) and the Eα’s
are the (real) excitation energies that we aim to determine.
We explicitly point out that with this form of HI(z) the
interactions enter the determination of the excited-state
wave functions only through the density distribution of
the condensate ground state. The same assumption has
been made in dealing with the excitations of condensates
in harmonic traps [18] and has led to good agreement with
experiment for the eigenfrequencies of the quadrupolar
surface modes.

For a BEC in a 1D periodic potential the quantum
numbers α are the band index n and the lattice quasi-
momentum q. From symmetry under time reversal we
have that, if {unq, vnq} is a solution of equations (6)
corresponding to energy Enq, then {vnq, unq} is a solu-
tion corresponding to energy −Enq [19, 20]. We may for
convenience call these the particle-like and the hole-like
solution, respectively, and limit ourselves to calculate the
spectrum at positive energy. As for the homogeneous Bose
fluid we expect gaplessness, since in its ground state the
whole condensate is in a single energy level placed at the
chemical potential. Therefore, the excitations of lowest en-
ergy (referred to the chemical potential) are phonons, i.e.
they have a linear dispersion relation.

It is convenient to introduce solutions Znq±(z) which
have definite symmetry under time reversal [7], by setting
Znq±(z) = [unq(z)± vnq(z)] /

√
2. From equations (6) we

have

L−(z)Znq+(z) = EnqZnq−(z) (7)

and

L+(z)Znq−(z) = EnqZnq+(z), (8)

where L±(z) = L(z)±HI(z). Hence,

L±(z)L∓(z)Znq±(z) = E2
nqZnq±(z). (9)

This equation shows that the functions Znq+(z) and
Znq−(z) are the right and left eigenvectors of the non-
Hermitian product operator L+(z)L−(z).

The ground state of the condensate can be taken at
q = 0 in the lowest band (n = 0, say) and special care
is needed in handling the functions Z00±(z), in order to
ensure gaplessness. This point is discussed for a periodic
condensate in Appendix A, following the arguments given
in references [19, 20]. Here we only need to note that an
evaluation of the functions Znq−(z) is not necessary for the
determination of the excitation energy eigenvalues. These
are calculated by solving equation (9) for Znq+(z), which
reads

L+(z)L−(z)Znq+(z) = E2
nqZnq+(z) . (10)

This equation applies also to the state Z00+(z) at zero
energy (relative to the chemical potential). Of course,
the function Z00+(z) is simply proportional to the func-
tion φ(z) introduced in equation (4). The solutions of
equation (10) must have the Bloch symmetry, which im-
poses definite q-dependent phase relationships between
different wells.

2.2 Expansion in terms of Wannier functions

It is well known from solid state theory [21] that any Bloch
orbital can be expressed as a superposition of the so-called
Wannier functions centred on the lattice sites. We thus
write

Znq±(z) =
1√
N

∑
l

exp(ilqd)wn±(z − ld) (11)

where the index l runs over all N sites of the lattice. Of
course, the Wannier functions wn±(z) have the same par-
ity under time reversal as the corresponding Bloch orbitals
Znq±(z). We may also recall that the Wannier functions
form a complete orthonormal set, i.e. they satisfy the rela-
tion

∫
dz w∗n±(z− ld)wn′±(z− l′d) = δnn′δll′ . Orthogonal-

ity between different wells implies oscillatory tails, falling
off more rapidly as overlap decreases.

Equation (11) expresses a Fourier-transform rela-
tionship between Bloch orbitals and Wannier func-
tions, embodying the Bloch translational symmetry. The
q-dependent Bloch orbitals emphasize the extended na-
ture of the lattice states and the periodicity of their en-
ergy eigenvalues in momentum space. The representation
in terms of Wannier functions emphasizes instead that the
lattice is a periodic assembly of identical wells. The Bloch
symmetry of the Fourier series in equation (11) is ensured
by the fact that the Fourier coefficients do not involve
a separate dependence on position z and on lattice site
index l.

In the case of a BEC in a lattice, a general conse-
quence of the Wannier-function description is immediately
evident from equation (11). Since the ground state is at
the chemical potential and has been taken to lie at q = 0
in the bottom of the lowest band, the excitations in this
band are wave-like modulations of the condensate phase
and their energy vanishes linearly in the limit q → 0. This
fact can be traced back to the existence of a Goldstone
phonon – a collective mode without restoring force [19]
resulting from spontaneous symmetry breaking (see the
discussion in Appendix A).

Similarly, for the higher excitation bands equation (11)
shows that each of them is a superposition of localized
excitations (described by wn+(z)), which is constructed by
imposing definite phase relationships between the various
sites as dictated by the translational lattice symmetry.
This theorem is valid, of course, within the Bogolubov
approach and has been derived through the reduction to
one-dimensionality.

In practice, the calculation of Wannier functions is in
general not an easy task. In the limit in which the Wannier
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functions become almost confined inside each lattice well
(which may be true for low-lying states), they can be ex-
panded in a limited number of “atomic” orbitals. We shall
discuss in the next section the conditions under which one
may replace the Wannier functions for a BEC in a peri-
odic optical potential by single-well orbitals and thereby
obtain explicit solutions in the TB limit.

2.3 Semiclassical transport in band states

We proceed to express through the Wannier functions the
current carried by a periodic Bose-condensed system sub-
ject to a constant force F in the semiclassical regime.
We restrict ourselves to Bloch oscillations in the lowest
band, described by the Wannier functionw0+(z). Through
equation (11) taken at q = 0, this function is immediately
related to the ground state φ(z) of the condensate.

The quantity of interest is the expectation value p̄(t)
of the momentum operator p = −i~d/dz in the state
Z0q(t)+(z), where q(t) = Ft/~. We introduce the Fourier
transform f0(k) of w0+(z),

f0(k) =
1√
2π

∫ ∞
−∞

dz w0+(z) exp(−ikz). (12)

Hence,

Z0q+(z) =
1√

2πN

∑
l

∫ ∞
−∞

dk f0(k) exp[i(q − k)ld+ ikz]

(13)

and a straightforward calculation yields

p̄(q(t)) =
~
∑
l

∫∞
−∞ dk k|f0(k)|2 cos[ld(q(t)− k)]∑

l

∫∞
−∞ dk |f0(k)|2 cos[ld(q(t)− k)]

· (14)

This is an exact expression, which holds independently
of the confining periodic potential and of the interaction
between the particles.

It is easily seen from equation (14) that (i) p̄(t) is a pe-
riodic function of time with the Bloch period TB = h/(Fd)
and (ii) p̄(t) vanishes at the Brillouin zone edges, i.e. at
q = ±π/d or t = ±TB/2.

3 Tight-binding approximation

The aim of the TB approximation is to relate the prop-
erties of the periodic system in a lattice potential to the
solution of the single (isolated) well problem. The results
of the method are quantitative as long as the single-well
solutions at adjacent sites do not overlap much with each
other. Namely, the validity of the TB approximation is
limited by the condition that the band-width be smaller
than the height of the lattice potential.

Slater [14] has studied the Wannier functions of the
“Mathieu problem” defined by the Schrödinger equation
for non-interacting electrons moving in the periodic po-
tential Up(z) = U0 sin2(kz) of present interest. He showed

that for the first five low-lying energy bands the Wannier
functions are well approximated by Hermite polynomials
under the condition U0 > 2ER, relaxing to U0 > ER/4 if
only the lowest energy band is of interest. Slater’s argu-
ment is summarized in Appendix B and extended there
to an interacting BEC. In essence the mean-field interac-
tions may be viewed in the present context as effecting
a renormalization in the height of the external potential,
accompanied by a spread of the wave functions. Slater’s
thresholds are thereby shifted by the amount

∆U0 =
ãdER

π
· (15)

If the threshold conditions are satisfied, the Wannier func-
tions wn+(z) at positive energy could be approximately
replaced by the eigenfunctions of the harmonic approxi-
mation to the single-well potential U

(s)

p (z) = U0 sin2(kz)
with z ∈ [−d/2, d/2] and U0 = U0 + ãdER/π.

3.1 Band structure for a periodic BEC

More generally, the evaluation of the energy bands for
a periodic condensate in the TB approximation would
require a preliminary solution of the on-site problem.
To this end, we separate the on-site parts L

(s)
± (z) out

of the operators L±(z) entering equation (9) by writ-
ing L±(z) = L

(s)
± (z) + ∆L±(z). The detailed definitions

of these operators are given in Appendix C. The on-
site operators L(s)

± (z) determine the single-well orbitals
ϕn±(z) corresponding to single-well energy eigenvalues εn,
according to

L
(s)
− (z)ϕn+(z) = εnϕn−(z),

L
(s)
+ (z)ϕn−(z) = εnϕn+(z). (16)

Again, the condensate in a single well lies at the chemical
potential µs (see the definitions of L(s)

± (z) in Appendix C).
Conjugation between fluctuations in the particle number
and in the phase must also be taken care of, as shown in
references [19, 20].

We define the overlap integrals

In(l) =
∫

dz ϕ∗n−(z)ϕn+(z − ld)

and the interaction integrals

Jn(l) =
∫

dz ϕ∗n−(z)∆ [L+(z)L−(z)]ϕn+(z − ld)

(see the definitions of the ∆L±(z) operators given in Ap-
pendix C). By exploiting equations (16) one easily finds
from equation (9) the dispersion relation

E2
nq = ε2n +

∑
l Jn(l) exp(ildq)∑
l In(l) exp(ildq)

· (17)
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An adiabatic argument regarding the switching-on of
the (spatial-symmetry conserving) mean-field interactions
shows that the product ϕ∗n−(z)ϕn+(z′) is even under space
inversion. Both series in equation (17) are therefore real
quantities.

Equation (17) displays the two main changes induced
by lattice periodicity on the single-well energy levels,
namely (i) a shift of each level relative to the single-well
value εn and (ii) the broadening of the level into a band.
In particular, for the lowest band the shift corresponds
to a renormalization of the chemical potential from the
single-well value µs to the value µ, which has to be eval-
uated self-consistently from the condition E00 = µ. The
resulting gaplessness introduces in equation (17) for n = 0
the linear, acoustic-phonon-like dispersion of the excita-
tion energies in the long wavelength limit q → 0.

We can now see how the excitations in the bands
with n = 1 and n = 2 may be related to single well
excitations. We make use of the present replacement of
Wannier functions by on-site orbitals, which are approx-
imately described by the eigenfunctions of the 1D har-
monic oscillator. Evidently, this allows us to identify the
on-site excitation leading to the n = 1 band with the
dipolar sloshing mode of the condensed particles within
the well. The construction of Bloch orbitals from these
localized sloshing motions simply amounts to fixing, for
each value of the wavenumber q, their relative phases ac-
cording to the lattice translational symmetry (see the dis-
cussion already given near the end of Sect. 2.2). Simi-
larly, the excitations in the n = 2 band may be viewed
as resulting from localized, single-well quadrupolar modes
with relative phases depending on q as imposed by lat-
tice symmetry. Of course, the approximate validity of such
a visualization of the collective low-lying modes of a pe-
riodic BEC is subject not only to conditions relating to
effective one-dimensionality in a mean-field approach, but
also to the restrictions associated with the TB scheme.

The above discussion also suggests how these collec-
tive band modes may become accessible to experimental
or computational observation. Clearly, at q = 0 the dipo-
lar mode can be excited by a rigid shaking of the lattice
and the quadrupolar one by a modulation of the width of
all the wells. Excitation of dipolar and quadrupolar band
modes at finite q would require similar probes at given
wavelengths.

3.2 Dispersion relation and Bloch oscillations
in the lowest band

We conclude this section by presenting some illustrative
numerical results for the lowest band in the TB approx-
imation. According to equation (15), in the case of re-
pulsive interactions the inequality U0 > (0.25 + ãd/π)ER

must be satisfied for the appropriate Wannier function to
be approximated by the Gaussian function

ϕ0+(z) =
1

(
√
πσ)1/2

exp(−z2/2σ2). (18)

Fig. 1. An example of the dispersion relation of phase ex-
citations in a BEC confined in an optical potential. We plot
the lowest-lying energy band as a function of the wave number
q (in units of 2π/d) within the 1D Brillouin zone, for values
of the system parameters given by a = 110a0, rlb = 80 µm,
n0 = 103, U0/ER = 0.25 and σ/d = 0.27.

The width σ of this Gaussian is determined in a first ap-
proximation by the curvature of the bottom of the single
well. A more accurate estimate of σ, which takes account
of the interactions between the particles in the BEC, is
given in Appendix C.

In fact, for the calculation of the dispersion relation
it is more convenient to revert back to equation (10) and
directly evaluate the integrals

K(l) =
∫

dz ϕ0+(z) [L+(z)L−(z)]ϕ0+(z − ld) (19)

and I(l) =
∫

dz ϕ0+(z)ϕ0+(z−ld). This procedure has the
advantage of involving only the known symmetric function
ϕ0+(z) given in equation (18). We estimate I0(0) ' 0.99
and hence we obtain

E2
0q = µ2 + 2K(1) [cos(qd)− 1] (20)

where µ2 = K(0) + 2K(1). We recall that the energies
in equation (20) are referred to the bottom of the lattice
potential.

We have calculated the integrals entering equation (20)
with the wave function in equation (18) for U0/ER = 0.25,
which corresponds to a value of σ/d = 0.27, in the
case a = 110a0, rlb = 80 µm and n0 = 103. These
values are relevant to the experiment of Anderson and
Kasevich [6]. The results are K(1) ' −4 × 10−4E2

R and
µ ' 0.1ER, yielding the value cs ' 0.02ERd/~ for the
speed of phonon-like excitations. Figure 1 shows the cor-
responding dispersion curve over the whole Brillouin zone.

Using equation (18) in equations (12, 14) we find the
following expression for the current induced by a constant
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Fig. 2. Average momentum of the BEC in the lowest-lying
energy band, in units of h/d, as a function of the wave num-
ber inside the 1D Brillouin zone, for the case a = 110a0,
rlb = 80 µm, n0 = 103 and for various values of the parame-
ter U0/ER. From top to bottom on the RHS of the drawing:
U0/ER = 0.25, 0.4, 0.8 and 1.2.

external force in states of the lowest band,

p̄(q(t)) =
~d
σ2

∑∞
l=1 l sin(lqd) exp

[
− (ld/2σ)2

]
1 + 2

∑∞
l=1 cos(lqd) exp

[
− (ld/2σ)2

] · (21)

In practice, in the TB limit the leading term in the nu-
merator is dominant and the denominator can be replaced
by unity. Namely,

p̄(q) ' ~d
σ2

sin(qd) exp
[
−
(
d2/4σ2

)]
. (22)

Figure 2 shows the behaviour of p̄(q) over the Brillouin
zone for various values of the parameter α = U0/2ER in
the case a = 110a0, rlb = 80 µm and n0 = 103.

4 Concluding remarks

In summary, and as already discussed in the work of Berg-
Sørensen and Mølmer [7], the properties which derive from
lattice symmetry for the wave functions and the energy
eigenvalues of electrons moving in a periodic 1D poten-
tial also hold for a Bose-condensed system. However, Bose
statistics and spontaneous symmetry breaking imply that
there is no gap between the condensate ground state and
the excitation spectrum. This latter property can be met
in the energy spectra of electrons in semiconductors only
as a consequence of accidental degeneracies induced by
specific space symmetries, a well-known instance being
provided by graphite [22]. For a periodic Bose conden-
sate the gaplessness property, together with the quadratic
structure of the energies as expressed in equations (9) (see
Sect. 2.1), yields on general grounds the linear dispersion
relation E0q = cs(|qd|) + O(q2d2) for the lowest energy
band.

We have seen that the specific form of the optical
potential acting on a BEC from a laser field admits
two important simplifications in the band-structure prob-
lem. Firstly, the problem for the low-lying bands can be
mapped into a one-dimensional one by accounting for the
transverse cross-section of the BEC through a renormal-
ization of the s-wave scattering length. This mapping has
been shown to be useful in relation to the experiments per-
formed by Anderson and Kasevich [12]. Secondly, the 1D
problem away from the weak-confinement limit is most
naturally formulated in terms of the Wannier functions,
which have already been studied for the Mathieu problem
by Slater [14]. The use of Wannier functions, as demon-
strated in Section 2.2, provides an exact formulation of
the lattice problem and immediately shows that (i) the
lowest excitations of a condensate in a periodic potential
are wave-like phase modulations, and (ii) the higher bands
arise from the superposition of localized excitations with
definite phase relationships.

An analytic study of semiclassical transport in a peri-
odic condensate subject to a constant external force be-
comes straightforward with the use of Wannier functions.
The expectation value of the momentum operator is peri-
odic with the Bloch period and vanishes at the Brillouin
zone edges, as shown in Section 2.3.

The work of Slater [14] allows one to specify the condi-
tions under which the Wannier functions for the low-lying
bands of the BEC in an optical periodic potential, and
in particular that for the lowest band containing its phase
excitations, can be accurately approximated by harmonic-
oscillator wave functions. These functions are simply de-
scribed by the curvature of the on-site well as renormal-
ized by the interactions in the BEC and allow an explicit,
though approximate, connection to be made between band
modes and single-well modes. They also allow very sim-
ple calculations on a periodic BEC, as illustrated in
Section 3 for the dispersion relation in the lowest en-
ergy band and for the average wavenumber-dependent mo-
mentum in correspondence to a particular set of system
parameters which is relevant to experiment.

This work is supported by the Istituto Nazionale di Fisica della
Materia through the Advanced Research Project on BEC. We
thank Professor G. Iadonisi for bringing Slater’s work to our
attention.

Appendix A: The zero-energy solutions
for the lattice problem

The equation obeyed by the wave function Z0q+(z) at
q = 0, that is Z00+(z) ∝ φ(z), is

L−(z)Z00+(z) = 0. (23)

We have chosen E00 = 0 relative to the chemical potential
µ of the condensate (see the definition of Λ(z) immediately
below Eq. (4)).
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In view of the macroscopic occupation of this quan-
tum state, one must allow for fluctuations in the num-
ber of particles and for the accompanying shifts of the
phase of the condensate. This is accounted for by adding
in the Hamiltonian a “kinetic energy” term αP 2/2,
where P =

∫
dzZ00+(z)[ψ̃(z) + ψ̃†(z)] is the number

operator generating such a “translation” and 1/α plays
the role of a mass. The canonically conjugate operator
Q = i

∫
dzZ00−(z)[ψ̃(z) − ψ̃†(z)] is easily seen to be the

phase operator. It satisfies the appropriate commutation
relation provided that the weighting function Z00−(z)
obeys the equation

L+(z)Z00−(z) = αZ00+(z), (24)

with the condition
∫

dzZ00−(z)Z00+(z) = 1/2.
From a more formal viewpoint [19,20], the Bogolubov

equations (6) at zero energy admit the eigenvector
{Z00+, Z00+}. A second solution is provided by the eigen-
vector of the squared Bogolubov operator with zero
eigenvalue. This implies that the result of applying the
Bogolubov operator to the second solution is propor-
tional to {Z00+, Z00+} through a constant to be deter-
mined, leading to equation (24). In fact, upon differen-
tiation of the Gross-Pitaevskii equation with respect to
the total number of particles n one is led again to equa-
tion (24), with Z00−(z) = 2

√
n∂(
√
nZ00+(z))/∂n and

α = 2n∂µ/∂n. Clearly, the constant α is related to the
change induced in the chemical potential µ by a fluctua-
tion in the number of particles.

Appendix B: Wannier functions
for low-lying bands

For the 1D Mathieu problem (non-interacting particles
moving in the potential Up(z) = U0 sin2(kz)), Slater [14]
shows that the eigenfunctions fn(k) in the momen-
tum representation obey the adimensional finite-difference
equation(
p2 +

1
2
s− ε

√
s

)
fn(p)− 1

4
s [fn(p+ 2) + fn(p− 2)] = 0,

(25)

where p = kd/π, s = 8U0/ER and ε = ER
√
s/U0. In the

low-lying energy bands fn(p) is a slowly varying function
of its argument, so that equation (25) is reduced to the
differential equation

−sd2fn(p)
dp2

+ (p2 − ε
√
s)fn(p) = 0. (26)

Evidently, this is the Schrödinger equation for a harmonic
oscillator, with energy levels εn = 2n + 1 and eigenfunc-
tions fn(κ) ∝ exp(−κ2/2)Hn(κ) where κ = s−1/4p and
Hn(κ) are the Hermite polynomials.

The Wannier functions appropriate to the low-lying
energy bands of the 1D Mathieu problem are, there-
fore, single-well orbitals with the same functional form

as for the harmonic oscillator. From his study of the exact
Wannier functions of the same problem Slater [14] then
showed that these single-well orbitals provide an accurate
description of the first five bands under the restriction
s > 16 i.e. U0 > 2ER. The condition of validity for the
first Wannier function in equation (18) can be estimated
from Slater’s numerical results as U0 > ER/4.

To extend this argument to the Wannier functions of
an interacting BEC, we view the mean-field interactions
as equivalent to a renormalization in the height of the
external potential, by an amount that we may estimate
as the average value of gφ2(z) over a lattice cell. From
the normalization condition satisfied by φ(z), in the case
of repulsive interactions the height of the periodic po-
tential is then lowered by an amount g/d. This leads to
equation (15) in the main text.

Appendix C: Details on the on-site problem

C.1 On-site Bogolubov operators

The operators L± entering the Bogolubov equations (7, 8)
can be split into an on-site part and a residual part as
L±(z) = L

(s)
± (z) +∆L±(z), where

L
(s)
− = −∇2/2m+ U (s)

p +H
(s)
I − µs, (27)

L
(s)
+ = L

(s)
− + 2H(s)

I (28)

and

∆L− = ∆Up +∆HI −∆µ, (29)
∆L+ = ∆L− + 2∆HI. (30)

In equations (27–30) U
(s)
p is the single-well potential

U
(s)
p = Up(z)θ

(
1− 4z2/d2

)
, θ(x) being the step function,

H
(s)
I is the on-site mean-field potential H(s)

I = gw2
0+(z)

and µs is the on-site chemical potential, while the ∆’s are
differences between lattice and single-well values. Namely,

∆Up(z) = U0 sin2(kz)θ
(

4z2

d2
− 1
)

(31)

and

∆HI(z) = g
(
|Z00+(z)|2 − |w0+(z)|2

)
. (32)

C.2 Variational calculation of Gaussian width

A crucial quantity in the calculations reported in
Section 3.2 is the width σ of ϕ0+(z), since the integrals
entering equation (20) are determined by the overlap in
adjacent wells. A first estimate of σ can be obtained from
the curvature of the bottom of the well: this determines a
frequency ω = (U0ER/2~2)1/2 such that σ = (~/mω)1/2.
A more refined variational estimate can be based on a
method first proposed by Baym and Pethick [16], includ-
ing the effect of interactions in the condensate.



378 The European Physical Journal D

We construct the energy functional

E[φ] =
~2

2m

∫
dz
∣∣∣∣dφ(z)

dz

∣∣∣∣2
+
∫

dz W (z)|φ(z)|2 +
1
2
g

∫
dz |φ(z)|4 (33)

and require that it be minimized by ϕ0+(z) when we set
W (z) = mω2z2/2. This yields the energy function

E(σ) =
~2

4mσ2
+

1
4
mω2σ2 +

g

2σ
√

2π
, (34)

which is minimized when σ obeys the condition

σ4 =
(
~
mω

)2

+
gσ√

2πmω2
· (35)

Evidently, repulsive interactions broaden the Wannier
function. A similar estimate of σ for the n = 1 band states
shows that the role of the interactions is decreasing with
increasing energy.

Note added in proof

An optimized reduction to one-dimensionality for an inter-
acting Bose condensate in an optical potential has been
proposed by two of us [M.L. Chiafalo, M.P. Tosi, Phys.
Lett. A 268, 406 (2000)].
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